Skip to main content

Fourier Transform

Fourier Series

We first introduce fourier series, where we decompose a periodic signal into a sum of sines and cosines.

info

We use the complex form of fourier series.

Some book uses the triangular form of fourier series, that is,

S(t)=k=0k=+akcos(2πkt)+bksin(2πkt)S(t) = \sum_{k=0}^{k=+\infty} a_k \cos(2 \pi k t) + b_k \sin(2 \pi k t)

Dirichlet tells us that, for a periodic signal, if, for any given t0t_0, f(t00)f(t_0-0) and f(t0+0)f(t_0+0) exists, and, there exists α>0\alpha > 0 such that the following integration converges,

0αf(t0+τ)f(t0+0)τdτ\int_{0}^{\alpha} \frac{||f(t_0 + \tau) - f(t_0 + 0)||}{\tau} \mathrm{d} \tau 0αf(t0+τ)f(t00)τdτ\int_{0}^{\alpha} \frac{||f(t_0 + \tau) - f(t_0 - 0)||}{\tau} \mathrm{d} \tau

Then there exists a way to use,

S(t)=k=k=+aiejkωtS(t) = \sum_{k=-\infty}^{k=+\infty} a_i e^{j k \omega t}

Where,

ω=2πT\omega = \frac{2 \pi}{T}

To express the periodic signal f(t)f(t).

Where,

S(t0)=12(f(t0+0)+f(t00))S(t_0) = \frac{1}{2} (f(t_0 + 0) + f(t_0 - 0))

As for the coefficients, we can have

0Tejpωtejqωtdt=0Tej(p+q)ωtdt=0Tcos((p+q)ωt)dt+j0Tsin((p+q)ωt)dt={0if p+q0Tif p+q=0\int_{0}^{T} e^{jp\omega t} e^{jq\omega t} \mathrm{d}t \\ = \int_{0}^{T} e^{j(p+q)\omega t} \mathrm{d}t \\ = \int_{0}^{T} \cos((p+q)\omega t) \mathrm{d}t + j \int_{0}^{T} \sin((p+q)\omega t) \mathrm{d}t \\ = \begin{cases} 0 & \text{if } p + q \neq 0 \\ T & \text{if } p + q = 0 \end{cases}

So we can conclude that, the coefficients are,

ak=1T0Tf(t)ejkωtdta_k = \frac{1}{T} \int_{0}^{T} f(t) e^{-j k \omega t} \mathrm{d}t

This is the definition of fourier series.

Fourier Transform

Non-periodic signals are just signals with infinite period. Previously, aia_i is how strong a signal is at a given frequency. Now we need to use its density, which we note as F(ω)F(\omega), so

F(ω)=+f(t)ejωtdtF(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j \omega t} \mathrm{d}t

And inversely,

f(t)=12π+F(ω)ejωtdωf(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j \omega t} \mathrm{d}\omega

This is the fourier transform.

We can note,

F(f(t))=F(ω)\mathcal{F}(f(t)) = F(\omega)

Or,

f(t)FF(ω)f(t) \xrightarrow{\mathcal{F}} F(\omega)

Fourier Transform for Common Signals

info

Some integration doesn't converge, and we force them to be by using the cauchy principle, which is,

P.V.+f(t)ejωtdt=limT+T+Tf(t)ejωtdtP.V. \int_{-\infty}^{+\infty} f(t) e^{-j \omega t} \mathrm{d}t = \lim_{T \to +\infty} \int_{-T}^{+T} f(t) e^{-j \omega t} \mathrm{d}t

However, this is sometimes also hard to calculate. We sometime also utilize the property that such functions are limits of other converge functions to get a value.

Delta Function

+δ(t)ejωtdt=1\int_{-\infty}^{+\infty} \delta(t) e^{-j \omega t} \mathrm{d}t = 1 δ(t)F1\delta(t) \xrightarrow{\mathcal{F}} 1

Single Side Exponential Function

+eαtejωtu(t)dt=1jω+α\int_{-\infty}^{+\infty} e^{-\alpha t} e^{-j \omega t} u(t) \mathrm{d}t = \frac{1}{j \omega + \alpha} eαtu(t)F1jω+αe^{-\alpha t} u(t) \xrightarrow{\mathcal{F}} \frac{1}{j \omega + \alpha}

Even Double Side Exponential Function

+(u(t)eαt+u(t)eαt)ejωtdt=1α+jω+1αjω=2αα2+ω2\int_{-\infty}^{+\infty} (u(t)e^{-\alpha t} + u(-t)e^{\alpha t}) e^{-j \omega t} \mathrm{d}t \\= \frac{1}{\alpha + j\omega} + \frac{1}{\alpha - j\omega} = \frac{2 \alpha }{\alpha^2 + \omega^2}

Constant

c=limα0c(u(t)eαt+u(t)eαt)c = \lim_{\alpha \to 0} c(u(t)e^{-\alpha t} + u(-t)e^{\alpha t})

We can prove that,

απ(α2+ω2)\frac{\alpha }{\pi(\alpha^2 + \omega^2)}

is a valid probability density.

We can integrate it. You can either use the triangular function,

+απ(α2+ω2)dω=+1π(1+(ωα)2)dωα=tanθ=ωαπ2π21πdθ=1\int_{-\infty}^{+\infty} \frac{\alpha }{\pi(\alpha^2 + \omega^2)} \mathrm{d} \omega \\ = \int_{-\infty}^{+\infty} \frac{1}{\pi(1 + (\frac{\omega}{\alpha})^2)} d\frac{\omega}{\alpha} \\ \overset{\tan \theta = \frac{\omega}{\alpha}}{=} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\pi} d\theta = 1

Or use the residual theorem,

+απ(α2+ω2)dω=+12π(1αjω+1α+jω)dω=2π2π=1\int_{-\infty}^{+\infty} \frac{\alpha }{\pi(\alpha^2 + \omega^2)} \mathrm{d} \omega \\ = \int_{-\infty}^{+\infty} \frac{1}{2\pi} (\frac{1}{\alpha - j\omega} + \frac{1}{\alpha + j \omega}) \mathrm{d} \omega \\ = \frac{2\pi}{2\pi} = 1

This is actually the Lorentzian Distribution.

As α0\alpha \to 0,

limα0απ(α2+ω2)={0ω0+ω=0\lim_{\alpha \to 0} \frac{\alpha }{\pi(\alpha^2 + \omega^2)} = \begin{cases} 0 & \omega \neq 0 \\ +\infty & \omega = 0 \end{cases}

That is to say,

limα0απ(α2+ω2)=δ(ω)\lim_{\alpha \to 0} \frac{\alpha }{\pi(\alpha^2 + \omega^2)} = \delta(\omega)

So,

cF2πcδ(ω)c \xrightarrow{\mathcal{F}} 2\pi c \delta(\omega)

Odd Double Side Fourier Transform

+(u(t)eαtu(t)eαt)ejωtdt=1α+jω1αjω=2jωα2+ω2\int_{-\infty}^{+\infty} (u(t)e^{-\alpha t} - u(-t)e^{\alpha t}) e^{-j \omega t} \mathrm{d}t \\= \frac{1}{\alpha + j\omega} - \frac{1}{\alpha - j\omega} = \frac{2 j\omega }{\alpha^2 + \omega^2}

Sign Function

sgn(t)=limα0(u(t)eαtu(t)eαt)sgn(t) = \lim_{\alpha \to 0} (u(t)e^{-\alpha t} - u(-t)e^{\alpha t})

Thus,

sgn(t)F2jωsgn(t) \xrightarrow{\mathcal{F}} \frac{2 j }{\omega}

Step Function

tip

You may think,

u(t)=limα0eαtu(t)u(t) = \lim_{\alpha \to 0} e^{-\alpha t} u(t)

So,

u(t)F1jωu(t) \xrightarrow{\mathcal{F}} \frac{1}{j \omega}

This is wrong because, for integration that doesn't converge, we use the Cauchy Principal Value.

However,

P.V.+ejωtu(t)dtlimα0+0+eαtejωtdtP.V. \int_{-\infty}^{+\infty} e^{-j \omega t} u(t) \mathrm{d}t \neq \lim_{\alpha \to 0} \int_{+0}^{+\infty} e^{-\alpha t} e^{-j \omega t} \mathrm{d}t

Since the integration doesn't approach two ends as the same speed.

Because,

u(t)=12+12sgn(t)u(t) = \frac{1}{2} + \frac{1}{2} sgn(t)

And since integration is linear, the fourier transform should also be linear, and thus,

u(t)Fπδ(t)+1jωu(t) \xrightarrow{\mathcal{F}} \pi \delta(t) + \frac{1}{j\omega}

Gate Function

+rectϵ(t)ejωtdt=ϵ+ϵ12ϵejωtdt=12ϵjωϵ+jωϵejωtd(jωt)=12ϵjω(ejωϵejωϵ)=2ϵsin(ωϵ)ωϵ\int_{-\infty}^{+\infty} \text{rect}_{\epsilon}(t) e^{-j \omega t} \mathrm{d}t \\ = \int_{-\epsilon}^{+\epsilon} \frac{1}{2\epsilon} e^{-j \omega t} \mathrm{d}t \\ = -\frac{1}{2\epsilon} \int_{-j\omega\epsilon}^{+j\omega\epsilon} e^{-j \omega t} \mathrm{d}(-j\omega t) \\ = \frac{1}{2\epsilon j \omega} (e^{j \omega \epsilon} - e^{-j \omega \epsilon}) \\ = 2\epsilon \frac{\sin(\omega \epsilon)}{\omega \epsilon}

This function is important. Thus we define sinc\text{sinc} function,

We define,

sinc(t)=sin(πt)πt\text{sinc}(t) = \frac{\sin(\pi t)}{\pi t}

Thus,

Rectϵ(t)=2ϵsinc(ωϵπ)\text{Rect}_\epsilon(t) = 2\epsilon \text{sinc}(\frac{\omega \epsilon}{\pi})