Skip to main content

Fourier Transform Properties

Last section we calculated some fourier transform. Now we can have some useful properties.

Let's put the formula here,

F(ω)=+f(t)ejωtdtF(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j \omega t} \mathrm{d}t

And inversely,

f(t)=12π+F(ω)ejωtdωf(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j \omega t} \mathrm{d}\omega

Linear

Because, integrate is linear, thus fourier transform is linear.

That is to say,

af(t)+bg(t)FaF(ω)+bG(ω)af(t) + bg(t) \xrightarrow{\mathcal{F}} aF(\omega) + bG(\omega)

Duality

If we assume,

f(t)FF(ω)f(t) \xrightarrow{\mathcal{F}} F(\omega)

Let's consider the fourier transform of F(t)F(t).

F(ω)=+F(t)ejωtdtF^*(\omega) = \int_{-\infty}^{+\infty} F(t) e^{-j \omega t} \mathrm{d}t

We also know that,

f(t)=12π+F(ω)ejωtdωf(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} F(\omega) e^{j \omega t} \mathrm{d} \omega

We can switch ω\omega and tt,

f(ω)=12π+F(t)ejωtdtf(\omega) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} F(t) e^{-j \omega t} \mathrm{d}t

Then we replace ω\omega with ω-\omega.

f(ω)=12π+F(t)ejωtdtf(-\omega) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} F(t) e^{j \omega t} \mathrm{d}t

Now look at,

F(ω)=+F(t)ejωtdtF^*(\omega) = \int_{-\infty}^{+\infty} F(t) e^{-j \omega t} \mathrm{d}t

We can conclude that,

F(ω)=2πf(ω)F^*(\omega) = 2\pi f(-\omega)

In all, if,

f(t)FF(ω)f(t) \xrightarrow{\mathcal{F}} F(\omega)

Then,

F(t)F2πf(ω)F(t) \xrightarrow{\mathcal{F}} 2\pi f(-\omega)

We've seen a real case before, that is,

δ(t)F1\delta(t) \xrightarrow{\mathcal{F}} 1

And

1F2πδ(ω)1 \xrightarrow{\mathcal{F}} 2\pi \delta(\omega)

Shifting Time is Shifting Phase

Suppose,

f(t)FF(ω)f(t) \xrightarrow{\mathcal{F}} F(\omega)

Then,

+f(tt0)ejωtdt=ejωt0+f(tt0)ejω(tt0)d(tt0)=ejωt0F(ω)\int_{-\infty}^{+\infty} f(t - t_0) e^{-j\omega t} \mathrm{d} t \\ = e^{-j\omega t_0} \int_{-\infty}^{+\infty} f(t - t_0) e^{-j\omega (t-t_0)} d(t - t_0) \\ = e^{-j\omega t_0} F(\omega)

Or,

f(tt0)Fejωt0F(ω)f(t-t_0) \xrightarrow{\mathcal{F}} e^{-j\omega t_0} F(\omega)

Shifting Phase is Shifting Frequency

Suppose,

f(t)FF(ω)f(t) \xrightarrow{\mathcal{F}} F(\omega) +f(t)ejω0tejωtdt=F(ω+ω0)\int_{-\infty}^{+\infty} f(t) e^{-j\omega_0t} e^{-j\omega t} \mathrm{d} t \\ = F(\omega + \omega_0) \\

Or,

f(t)ejω0tFF(ω+ω0)f(t) e^{-j\omega_0t} \xrightarrow{\mathcal{F}} F(\omega + \omega_0)

Scale

Suppose,

f(t)FF(ω)f(t) \xrightarrow{\mathcal{F}} F(\omega) +f(αt)ejωtdt=1α+f(αt)ejωααtdαt=1αF(ωα)\int_{-\infty}^{+\infty} f(\alpha t) e^{-j\omega t} \mathrm{d}t \\ = \frac{1}{||\alpha||} \int_{-\infty}^{+\infty} f(\alpha t) e^{-j \frac{\omega}{\alpha} \alpha|t} \mathrm{d} \alpha t \\ = \frac{1}{||\alpha||} F(\frac{\omega}{\alpha})

Or,

f(αt)F1αF(ωα)f(\alpha t) \xrightarrow{\mathcal{F}} \frac{1}{||\alpha||} F(\frac{\omega}{\alpha})

Derivative

Suppose,

f(t)FF(ω)f(t) \xrightarrow{\mathcal{F}} F(\omega)

Then,

+f(t)ejωtdt=jω+f(t)ejωtdt=jωF(ω)\int_{-\infty}^{+\infty} f'(t) e^{-j\omega t} \mathrm{d}t \\ = -j\omega \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} \mathrm{d}t \\ = -j\omega F(\omega)

Or,

f(t)FjωF(ω)f'(t) \xrightarrow{\mathcal{F}} -j\omega F(\omega)

Integral

Suppose,

f(t)FF(ω)f(t) \xrightarrow{\mathcal{F}} F(\omega)

Because,

+(tf(τ)dτ)ejωtdt=+(tejωτdτ)f(t)dt=F(ω)jω\int_{-\infty}^{+\infty} (\int_{-\infty}^{t}f(\tau)\mathrm{d}\tau) e^{-j\omega t} \mathrm{d}t \\ = \int_{-\infty}^{+\infty} (\int_{-\infty}^{t}e^{-j\omega \tau}\mathrm{d}\tau) f(t) \mathrm{d}t = \frac{F(\omega)}{-j\omega}

Or,

tf(τ)dτFF(ω)jω\int_{-\infty}^{t}f(\tau) \mathrm{d}\tau \xrightarrow{\mathcal{F}} \frac{F(\omega)}{-j\omega}

Convolution

Suppose,

f(t)FF(ω)g(t)FG(ω)f(t) \xrightarrow{\mathcal{F}} F(\omega) \\ g(t) \xrightarrow{\mathcal{F}} G(\omega)

Then,

f(t)g(t)=+f(τ)g(tτ)dτf(t) \ast g(t) = \int_{-\infty}^{+\infty} f(\tau) g(t - \tau) \mathrm{d}\tau +(f(t)g(t))ejωtdt=+(+f(τ)g(tτ)dτ)ejωtdt=+(+f(τ)ejωτdτ)g(tτ)ejω(tτ)dt=+F(ω)g(tτ)ejω(tτ)dt=F(ω)G(ω)\int_{-\infty}^{+\infty} (f(t) \ast g(t)) e^{-j\omega t}\mathrm{d}t \\ = \int_{-\infty}^{+\infty} (\int_{-\infty}^{+\infty} f(\tau) g(t - \tau) \mathrm{d}\tau) e^{-j\omega t}\mathrm{d}t \\ = \int_{-\infty}^{+\infty} (\int_{-\infty}^{+\infty} f(\tau) e^{-j\omega \tau} \mathrm{d}\tau) g(t-\tau) e^{-j \omega (t-\tau)} \mathrm{d}t \\ = \int_{-\infty}^{+\infty} F(\omega) g(t-\tau) e^{-j \omega (t-\tau)} \mathrm{d}t \\ = F(\omega)G(\omega)

So,

f(t)g(t)FF(ω)G(ω)f(t) \ast g(t) \xrightarrow{\mathcal{F}} F(\omega)G(\omega)

Multiplication

Similarly, we can prove,

f(t)g(t)F12πF(ω)G(ω)f(t)g(t) \xrightarrow{\mathcal{F}} \frac{1}{2\pi}F(\omega) \ast G(\omega)

With fourier inverse transform.